Modeling the Thermal Response of Explosives

Jobie M. Gerken

Engineering Sciences & Applications Division Engineering Analysis Group

Objective

- Predict the response of HE
 - -STS
 - What is the state of the HE upon delivery?
 - Abnormal
 - What is the state of the HE after an abnormal event?
 - Will the HE release energy?
 - If so, how much?

HE Response

Detonation

- "reactive-wave phenomena whose propagation is controlled by shock waves"
 - "Numerically Modeling of Explosives and Propellants," Charles Mader

Thermal Response

- Energy release but no shock wave
- Energy can approach that of a detonation
- a.k.a. Non-Shock initiation

Thermal Response

- Caused by temperature increase
 - Mechanical loading
 - adiabatic heating
 - viscous dissipation
 - pore collapse
 - friction
 - cracking work
 - External temperature increase

Thermal Response

- Chemical decomp. = energetic release
 - Modeling question:
 - How does the mechanical and thermal loading combine with the chemical decomposition to produce energy?
 - Possible answers:
 - Self sustaining reaction Initiation
 - Quenched reaction small energy release
 - No reaction

Thermal Response Scenarios

- Usually unintended accident scenarios
 - Abnormal Heat Environments
 - Processing fires
 - Transportation accidents
 - Abnormal Mechanical Events
 - Handling accidents
 - Transportation accidents
 - Hostile attacks

Modeling

- Determine
 - Will the HE react?
 - If it does, how violent is the reaction?
- The model must
 - predict the structural response of the HE
 - determine the interaction between the mechanical/thermal loading and chemical decomposition

PBX Response

- Brittle HE particles bonded with polymer
 - Mechanical
 - Composition suggests a rate dependent material that will lose strength as load is applied (i.e. a viscoelastic damage model)
 - Thermal
 - Primarily governed by HE particles
 - mechanical work done on particle causes temperature increase and chemical decomposition
- Continuum Model ViscoSCRAM
- Discrete Cracking

Mechanical Response - ViscoSCRAM

- Visco Elastic
 - Isotropic, Generalized Maxwell Model
- Continuum Damage
 - Statistical Crack Mechanics (SCRAM)
 - Statistical Dist. of Randomly Oriented Micro Cracks
 - Rate Dependant Crack Growth
 - Crack Face Friction

ViscoSCRAM - Mechanical

ViscoSCRAM - Mechanical

- Large Macroscopic Cracks
 - Change material response
 - Change geometry
 - Can increase reaction violence
 - Exposed surface is easier to burn
 - Release of decomposition gases
 - Ignition causes additional mechanical/thermal load

• Method:

- ⇒ Standard FE Model
- ⇒ Bond Elements Together
- ⇒ Evaluate Failure Criteria @ Each Interface
- ⇒ Release Bond for Fracture

Failure Criteria

- Failure Based on Stresses from Adjacent Elements

- Stress @ interface -
$$\overline{\sigma} = \frac{\sigma_1 + \sigma_2}{2}$$
 $\overline{\tau} = \frac{\tau_1 + \tau_2}{2}$

- Failure Criteria
 - Interface Normal Stress

$$\overline{\sigma}_n \ge \sigma_f$$

Effective Stress

$$|\sigma| \ge \sigma_f$$

Fracture Energy

$$K_I = \overline{\sigma} \sqrt{\pi \cdot a}$$
 $K_{II} = \overline{\tau} \sqrt{\pi \cdot a}$

- Stress Bridging (HE Model)
 - Resistive Forces @ Interface after Failure

Using randomized failure criteria, the simulations show qualitative agreement with experimental results

Thermal - ViscoSCRAM

- Bulk Heating
 - Mechanical
 - Viscous
 - Cracking
 - Adiabatic Volume Change
 - Chemical Decomposition
 - Arrennius First Order Chemical Kinetics
- Hot Spot Heating
 - Crack face friction

ViscoSCRAM - Bulk Heating

$$\dot{T} = \alpha T_{,ii} - \gamma T \dot{\varepsilon}_{jj} + \frac{\Im}{\rho C_{v}} \left[\left(\dot{w} \right)_{ve} + \left(\dot{w} \right)_{cr} \right] + P_{he} \dot{q}_{ch}$$

$$|\alpha T_{,ii}|$$
 – Rate of conduction

$$|\gamma T \dot{\varepsilon}_{jj}|$$
 – Adiabatic compression heating rate

$$\left| \frac{\Im}{\rho C_v} (\dot{w})_{ve} \right|$$
 - Visco-elastic work rate

$$\frac{\Im}{\rho C_{v}} (\dot{w})_{cr}$$
 - Cracking work rate

$$P_{he}\dot{q}_{ch}$$
 – Bulk chemical heating rate

ViscoSCRAM - Hot Spot

$$\rho_f C_f \dot{T} = \frac{\partial}{\partial y} \left(k_f \frac{\partial T}{\partial y} \right) + \rho_f \Delta H Z e^{-E/RT} - \mu_d \sigma_m \frac{\partial v_x}{\partial y}$$

$$l_f \ge y \ge 0$$

$$\rho_s C_s \dot{T} = \frac{\partial}{\partial y} \left(k_s \frac{\partial T}{\partial y} \right) + \rho_s \Delta H Z e^{-E/RT}$$

$$y > l_f$$

ViscoSCRAM - Thermal

Engineering Analysis

Los Alamos
NATIONAL LABORATORY

Status of Thermal Modeling

- ViscoSCRAM ignition is being calibrated/validated
 - "Tuning" parameters in the model to match experimental results
 - SS HEVR
 - Stevens
 - Asay Impact
 - Simple experimental results are limited

Future of Thermal Modeling

- To capture reaction violence, a model for discrete cracking, gas evolution and ignition must be developed
 - The concept:
 - Models for gas evolution exist
 - Discrete Crack model predicts cracking
 - All that is left is to couple the two models
 - The implementation may not be simple

Abstract Concept:

- → Gas in crack
- → Gas may ignite
- → Load crack faces
- → Crack accelerates
- → Transports reaction

- Modeling 1st cut
 - Structural/Thermal loading
 - Gas evolution in HE
 - Increased Stress @ Crack Tip
 - Interface 1 breaks
 - 2D surface is now a volume
 - Gas escapes from C & D to adjacent volume
 - Ignition causes pressure
 - Increased load on C & D
 - Interface 2 breaks
 - Cycle continues

- Difficulty The process is global
 - Gas in cavity 1 is not only from C & D
 - Ignition is dependent on whole crack geometry
 - Ignition/Flamepropagation is a function of pressure

- Currently a conceptual model
- Timeframe for implementation is unknown

Conclusions

- Thermal Response of HE requires both mechanical and thermal models
 - Structural response determines the bulk and hotspot thermal response
 - Crack model determine the extent of reaction and reaction violence
- Calibration of ignition model is ongoing
 - Provides the best answer to "Will the HE release energy?"
 - Does not answer "How much energy?"

